Female Urology, Urogynecology, and Voiding Dysfunction

Edited By
Sandip P. Vasavada, M.D.
Rodney A. Appell, M.D.
Peter K. Sand, M.D.
Shlomo Raz, M.D.
Female Urology, Urogynecology, and Voiding Dysfunction
Female Urology, Urogynecology, and Voiding Dysfunction

Edited By
Sandip P. Vasavada, M.D.
Cleveland Clinic Foundation,
Cleveland, Ohio, U.S.A

Rodney A. Appell, M.D.
Baylor College of Medicine,
Houston, Texas, U.S.A.

Peter K. Sand, M.D.
Northwestern University,
Evanston, Illinois, U.S.A.

Shlomo Raz, M.D.
David Geffen School of Medicine at UCLA,
Los Angeles, California, U.S.A.

Marcel dekker
New York
Preface

There has been a convergence of the sub-specialties of female urology and urogynecology over the last several years. This development has resulted in improved care for women, as we have had to “escalate” our own knowledge and abilities. Recently, we have even seen fellowship training transcend towards this multidisciplinary goal by the creation of joint accredited fellowship programs in female urology and urogynecology. These programs have as their primary aim to create the thought leaders of tomorrow in women’s health by creating a unique group of physicians who see the “whole” patient and can treat them accordingly. It is evident that there is a strong need for more subspecialization in the field with the aging population and prevalence of incontinence and pelvic floor disorders that is present worldwide. This book speaks to the combined nature of our practices that has emanated from this approach.

We have sought to have some of the top thought leaders and experts from around the world to contribute to this publication. Furthermore, these authors embody some of the exact principles, which establish our sub-specialties as being progressive and forward thinking in their approaches to the various disease processes and disorder that we treat. One of the prevailing undertones of our book speaks to the fact that there are many ways in which to treat any single disorder. We have, therefore, had several chapters written by physicians or subspecialists who may do things differently to present contradictory views. The purpose is more than to be controversial, but rather to give an entrance point for those wishing to advance the field and aim for the utopian dream of literal cures for incontinence and other women’s disorders.

We all have much to learn in this area of urinary incontinence and pelvic floor disorders. It is our hope that this book will help to build on the currently existing framework and provide a platform towards better understanding of the disease processes that affect so many of our patients.

Sandip P. Vasavada, M.D.
Rodney A. Appell, M.D.
Peter K. Sand, M.D.
Shlomo Raz, M.D.
Introduction

Times have changed and so should our intellectual basis for the management of diseases and conditions. Once thought of as an anatomic structure containing disparate and unrelated viscera, the human pelvis is now appreciated as a functional syncytium as complex as any within the human body. The dysfunctions of urinary, genital, and gastrointestinal elements which constitute this complex functional-anatomic arrangement require comprehensive and inclusive management strategies.

None of us is capable of mastering the vagaries of function and structure of all the elements of the human pelvis and therefore it is requisite that expertise be drawn from collaborative fields of endeavor so that as complete a management schema as is possible be developed. Additionally, the very real superimposition of behavioral, vascular and neurologic dysfunctions further make the inclusive “team” approach concept a mandatory one. This textbook represents a superb example of the inclusive approach for management. The interaction between colorectal (and gastroenterologic), urogynecologic, and urologic specialists can and does produce the best possible outcome for individual patients as well as for entire populations of individuals.

The concept of pelvic medicine remains not only viable, but one that reflects the aforementioned global interaction and collaboration of similarly motivated specialists whose primary concern is the attainment of the best outcome possible for women severely afflicted by conditions which are disruptive and destructive to quality of life and, in some cases, to well being and life expectancy. This book should be viewed in the context of intellectual instruction and exchange which will make the pelvic medicine endeavor that much more successful from both the patient and medical standpoint. The editors of the authors of the text represent the best and their achievement should serve as a model for subsequent efforts in cross specialty collaboration and, possibly more importantly, harmony.

Roger Dmochowski, M.D., F.A.C.S.
Department of Urology
Vanderbilt University Medical Center
Nashville, Tennessee, U.S.A.
Introduction

Over the last 10 years, all of you who care for women in your practice have been impressed with the increasing call to provide services for urinary incontinence and pelvic organ prolapse. These pelvic floor disorders are becoming more prevalent within our practices as the number of women in the age groups most affected by these disorders increases. Also, women now coming into these age groups have a more proactive approach to their own health care than did their mothers and their sophistication and expectations demand optimal care.

It is estimated that the demand for pelvic floor disorders care will double in the next 25 years. This increasing demand combined with the remarkable growth in high quality research is both encouraging and intimidating. Intimidating in that as we learn more, we realize how much more we have to learn and encouraging as we watch great strides in both basic science and outcomes research take hold.

This text embraces one of the fundamental concepts that leaders within both female urology and urogynecology have come to understand—that women with pelvic floor disorders are best served by an approach that acknowledges the wisdom and experience of both of these developing subspecialties. Thus, these varied accounts by divergent authors give the reader the opportunity to consider these issues from many points of view. This will inevitably lead to a richness of understanding that a single doctrine could not provide.

As we face the challenge of training our residents, fellows and colleagues, we will come to appreciate this text as an excellent resource and frequent reference. These in depth discussions of both basic and complex components of Female Urology, Urogynecology and Voiding Dysfunction offer us an opportunity to both reflect and to look forward. As all involved in research and providing care in this growing field combine forces, the wisdom and philosophy embodied in this work will enable us to expand the foundation of physicians able to join in the process toward the ultimate goal of improving the quality of the care that these women receive.

Karl M. Luber, M.D.
University of California, San Diego
Southern California Permanente Medical Group
San Diego, California, U.S.A.
Contents

Preface
Roger Dmochowski
iii

Introduction
Karl M. Luber
vii

Contributors
 xv

Basic Concepts

1. Anatomy of Pelvic Support
 Nirit Rosenblum, Karyn S. Eilber, Larissa V. Rodriguez, and Shlomo Raz
 1

2. Neurophysiology of Micturition
 Gamal M. Ghoniem and John C. Hairston
 23

3. Epidemiology of Female Urinary Incontinence
 Christopher Saigal and Mark S. Litwin
 45

4. Quality-of-Life Issues in Incontinence
 David F. Penson and Mark S. Litwin
 53

5. Female Sexual Dysfunction
 Kathleen E. Walsh and Jennifer R. Berman
 65

6. Hormonal Influence on the Lower Urinary Tract
 Dudley Robinson and Linda Cardozo
 79

7. Obstetric Issues and the Female Pelvis
 Roger P. Goldberg and Peter K. Sand
 95

SECTION I. INCONTINENCE

Evaluation of Incontinence

8. History and Physical Examination in Pelvic Floor Disorders
 Sanjay Gandhi and Peter K. Sand
 119

Urodynamic Assessment

9. Urodynamic Assessment: Urethral Pressure Profilometry and PTR
 141
Contents

Stacey J. Wallach and Donald R. Ostergard

10. Leak Point Pressures
 Shahar Madjar and Rodney A. Appell

11. Videourodynamics
 Jennifer Gruenenfelder and Edward J. McGuire

12. Pharmacologic and Surgical Management of Detrusor Instability
 H. Henry Lai, Michael Gross, Timothy B. Boone, and Rodney A. Appell

Management of Urinary Incontinence

13. Pharmacologic Management of Urinary Incontinence
 Alan J. Wein and Eric S. Rovner

14. Behavioral Treatments
 Diane K. Newman

15. Pessaries and Vaginal Devices for Stress Incontinence
 G. Willy Davila and Minda Neimark

16. Current Role of Transvaginal Needle Suspensions
 Firouz Daneshgari

17. Anterior Vaginal Wall Suspension
 Tracey Small Wilson and Philippe E. Zimmern

18. Retropubic Urethropexy
 Jeffrey L. Cornella

19. Laparoscopic Treatment of Urinary Stress Incontinence
 Thomas L. Lyons

20. Insertion of Artificial Urinary Sphincter in Women
 H. Roger Hadley

21. Urethral Injectables in the Management of SUI and Hypermobility
 Sender Herschorn and Adonis Hijaz

Vaginal Sling Surgery: Overview and history

22. Vaginal Sling Surgery: Overview, History, and Sling Material
 Keith J. O'Reilly and Kathleen C. Kobashi

Vaginal Sling Surgery: Techniques

23. Use of Cadaveric Fascia Lata Allograft for Pubovaginal Slings
 Matthew B. Gretzer and E. James Wright

24. Autologous Fascia Lata Sling Cystourethropexy
 Karl J. Kreder

25. The In Situ Anterior Vaginal Wall Sling
 Howard B. Goldman

26. CATS: Cadaveric Transvaginal Sling
Dawn M. Bodell and Gary E. Leach
27. Tension-Free Vaginal Tape: An Innovative, Minimally Invasive Pubovaginal Sling for Female Stress Urinary Incontinence
Vincent R. Lucente and Marisa A. Mastropietro

399

Larissa V. Rodríguez
28. Distal Urethral Polypropylene Sling

417

Sanjay Gandhi and Peter K. Sand
29. Transvaginal Cooper’s Ligament Sling for the Treatment of Stress Urinary Incontinence and Low-Pressure Urethra

429

Peter O. Kwong and O. Lenaine Westney
30. Management of Postoperative Detrusor Instability and Voiding Dysfunction

437

Elizabeth A. Miller and George D. Webster
31. Postoperative Complications of Sling Surgery

447

Management of Refractory Detrusor Instability

Patrick J. Shenot
32. Detrusor Myomectomy

457

Eric S. Rovner, David A. Ginsberg and Shlomo Raz
33. Management of Refractory Detrusor Instability: Anterior Flap Extraperitoneal Cystoplasty

465

Raymond R. Rackley and Joseph B. Abdelmalak
34. Laparoscopic Enterocystoplasty

473

Patrick J. Shenot
35. Management of Refractory Detrusor Instability: Sacral Nerve Root Stimulation

485

SECTION II. PELVIC ORGAN PROLAPSE

Steven Swift
36. Physical Exam and Assessment of Pelvic Support Defects

497

Craig V. Comiter
37. Radiographic Evaluation of Pelvic Organ Prolapse

507

Karyn Schlunt Eilber, Nirit Rosenblum, and Shlomo Raz
38. Surgical Therapy of Uterine Prolapse

525

Paul M. Fine and Dallas Johnson
39. Vaginal Hysterectomy and Other Operations for Uterine Prolapse

545

Christina H. Kwon and Peter K. Sand
40. Advanced Anterior Vaginal Wall Prolapse (Stage III and IV)

561

Harriette M. Scarpero and Victor W. Nitti
41. Anterior Vaginal Wall Prolapse: Mild/Moderate Cystoceles

575

42. Diagnosis and Treatment of the Stage IV Cystocele

595
Nancy B. Itano, Fernando Almeida, Larissa V. Rodriguez, and Shlomo Raz

43. Surgical Correction of Paravaginal Defects
 Matthew D. Barber
 615

44. Paravaginal Repair: A Laparoscopic Approach
 John R. Miklos, Robert Moore, and Neeraj Kohli
 631

45. Transvaginal Levator Myorrhaphy for Vaginal Vault Prolapse
 Gary E. Lemack and Philippe E. Zimmern
 641

46. Sacrospinous Ligament Suspension for Vaginal Vault Prolapse
 Roger P. Goldberg and Peter K. Sand
 651

47. Surgical Treatment of Vaginal Apex Prolapse: Transvaginal Approaches
 Mark D. Walters and Tristi W. Muir
 663

48. Abdominal Sacrocolpopexy for the Correction of Vaginal Vault Prolapse
 J. Christian Winters, Richard Vanlangendonck, and R. Duane Cespedes
 677

49. Laparascopic Abdominal Sacral Colpopexy
 Marie Fidela R. Paraiso
 691

50. Colpocleisis for the Treatment of Severe Vaginal Vault Prolapse
 R. Duane Cespedes and J. Christian Winters
 701

51. Rectocele Repair/Posterior Colporrhaphy
 Nirit Rosenblum, Karyn S. Eilber, and Larissa V. Rodriguez
 717

52. Evaluation and Management of Rectoceles
 Jeffrey L. Segal and Mickey M. Karram
 735

SECTION III. RECONSTRUCTION

53. Vesicovaginal Fistula: Complex Fistulae
 Karyn Schlunt Eilber, Nirit Rosenblum, and Larissa V. Rodriguez
 761

54. Vesicovaginal Fistula: Abdominal Approach
 Martin B. Richman and Howard B. Goldman
 783

55. Urethrovaginal Fistula
 John B. Gebhart and Raymond A. Lee
 797

56. Female Urethral Diverticula
 Sandip P. Vasavada and Raymond R. Rackley
 811

57. Urethral Reconstruction in Women
 Jerry G. Blaivas and Adam J. Flisser
 841

58. Radical Cystectomy and Orthotopic Neobladder Substitution in the Female
 David A. Ginsberg and John P. Stein
 859

SECTION IV. OTHER

59. Interstitial Cystitis
 Marie-Blanche Tchetgen, Raymond R. Rackley, and Joseph B. Abdelmalak
 889
60. Chronic Pelvic Pain in Interstitial Cystitis
 James Chivian Lukban and Kristene E. Whitmore
 903

61. Fecal Incontinence
 Tracy Hull
 919

Index
 931
Contributors

Joseph B. Abdelmalak Cleveland Clinic Foundation, Cleveland, Ohio, U.S.A.

Fernando Almeida* University of California, Los Angeles, California, U.S.A.

Rodney A. Appell, M.D. Head, Section of Female Urology and Voiding Dysfunction, F. Brantley Scott Chair. Professor of Urology and Gyneocology, Baylor College of Medicine, Houston, Texas, U.S.A.

Matthew D. Barber, M.D., M.H.S. Section of Urogynecology, Pelvic Reconstruction Surgery, Cleveland Clinic Foundation, Cleveland, Ohio, U.S.A.

Jennifer R. Berman Female Sexual Medicine Center, David Geffen School of Medicine at UCLA, Los Angeles, California, U.S.A.

Jerry G. Blaivas Joan and Sanford Weil College of Medicine, Cornell University, New York, New York, U.S.A.

Dawn M. Bodell Fellow, Tower Urology Institute for Continence, Los Angeles, California, U.S.A.

Timothy B. Boone, M.D., Ph.D. Professor and Chairman, Scott Department of Urology, Baylor College of Medicine, Houston, Texas, U.S.A.

Linda Cardozo, M.D., F.R.C.O.G. Professor of Urogynaecology, Department of Obstetrics and Gynaecology, King’s College Hospital, London, England

R. Duane Cespedes, M.D. Chairman, Department of Urology, Wilford Hall Medical Center, Lackland AFB, Texas, U.S.A.

*Current affiliation: Senior Associate Consultant, Department of Urology, Mayo Clinic Scottsdale, Scottsdale, Arizona, U.S.A.
xvi Contributors

Craig V. Comiter University of Arizona Health Sciences Center, Tucson, Arizona, U.S.A.

Jeffrey L. Cornella Mayo Clinic Scottsdale, Scottsdale, Arizona, U.S.A.

Firouz Daneshgari Director, Center for Female Pelvic Medicine and Reconstructive Surgery, The Cleveland Clinic Foundation, Cleveland, Ohio, U.S.A.

G. Willy Davila Cleveland Clinic Florida, Weston, Florida, U.S.A.

Karyn Schlunt Eilber, M.D.† Department of Urology, University of California, Los Angeles, California, U.S.A.

Paul M. Fine Baylor College of Medicine, Houston, Texas, U.S.A.

Adam J. Flisser Joan and Sanford Weil College of Medicine, Cornell University, New York, New York, U.S.A.

Sanjay Gandhi, M.D. Research Fellow, Department of Obstetrics and Gynecology, Northwestern University, Evanston, Illinois, U.S.A.

John B. Gebhart Mayo Clinic and Mayo Clinic College of Medicine, Rochester, Minnesota, U.S.A.

Gamal M. Ghoniem, M.D., F.A.C.S. Head, Section of Voiding Dysfunction and Female Urology, Cleveland Clinic Florida and the Cleveland Clinic Foundation Health Sciences Center of OSU, Weston, Florida, U.S.A.

David A. Ginsberg Assistant Professor of Urology, Department of Urology, University of Southern California School of Medicine, Los Angeles, California, U.S.A.

Roger P. Goldberg, M.D., M.P.H. Director of Urogynecology Research, Evanston Continence Center, Northwestern University Medical School, Evanston, Illinois, U.S.A.

Howard B. Goldman, M.D. Assistant Professor of Urology, Department of Urology and Reproductive Biology, University Hospitals of Cleveland, CASE School of Medicine, Cleveland, Ohio, U.S.A.

Matthew B. Gretzer The Johns Hopkins Medical Institutions, Baltimore, Maryland, U.S.A.

Michael Gross Fellow in Neurourology, Scott Department of Urology, Baylor College of Medicine, Houston, Texas, U.S.A.

Jennifer Gruenenfelder University of Michigan, Ann Arbor, Michigan, U.S.A.

H. Roger Hadley, M.D. Professor and Chief, Division of Urology, Loma Linda University, Loma Linda, California, U.S.A.

†Current affiliation: Assistant Attending, Department of Urology, Memorial Sloan-Kettering Cancer Center, New York, New York, U.S.A.
John C. Hairston, M.D. Assistant Professor of Urology, Division of Urology, University of Texas Medical School at Houston, Houston, Texas, U.S.A.

Sender Herschorn University of Toronto and Sunnybrook and Women’s Health Sciences Centre, Toronto, Ontario, Canada

Adonis Hijaz University of Toronto and Sunnybrook and Women’s Health Sciences Centre, Toronto, Ontario, Canada

Tracy L. Hull, M.D. Staff Surgeon, Department of Colon and Rectal Surgery, Cleveland Clinic Foundation, Cleveland, Ohio, U.S.A.

Nancy B. Itano University of California, Los Angeles, California, U.S.A.

Dallas Johnson Baylor College of Medicine, Houston, Texas, U.S.A.

Mickey M. Karram, M.D. Director Urogynecology, Professor OBGYN, Department of OBGYN, Good Samaritan Hospital, Cincinnati, Ohio, U.S.A.

Kathleen C. Kobashi, M.D. Co-Director, Urology and Renal Transplantation, Continence Center, Virginia Mason Medical Center, Seattle, Washington, U.S.A.

Neeraj Kohli, M.D. Associate Professor; Director, Division of Urogynecology, Brigham and Womens Hospital, Harvard University, Boston, Massachusetts, U.S.A.

Karl J. Kreder, M.D. Professor and Clinical Vice Chair, Department of Urology, University of Iowa, Iowa City, Iowa, U.S.A.

Christina H. Kwon Evanston Continence Center, Northwestern University, Evanston, Illinois, USA

Peter O. Kwong, M.D. Fellow in Female Urology and Urinary Tract Reconstruction, Department of Surgery/Urology, University of Texas Health Science Center, Houston, Texas, U.S.A.

H. Henry Lai, M.D. Resident, Scott Department of Urology, Baylor College of Medicine, Houston, Texas, U.S.A.

Gary E. Leach Director, Tower Urology Institute for Continence, Los Angeles, California, U.S.A.

Raymond A. Lee Mayo Clinic and Mayo Clinic College of Medicine, Rochester, Minnesota, U.S.A.

Gary E. Lemack, M.D. Associate Professor of Urology, Southwestern Medical Center, University of Texas, Dallas, Texas, U.S.A.

§Current affiliation: Senior Associate Consultant, Department of Urology, Mayo Clinic Scottsdale, Scottsdale, Arizona, U.S.A.
Contributors

Mark S. Litwin, M.D., M.P.H. Professor, Department of Urology, David Geffen School of Medicine at UCLA and UCLA School of Public Health, Los Angeles, California, U.S.A.

Vincent R. Lucente, M.D., M.B.A.† Pennsylvania State University, College of Medicine, Hershey, Pennsylvania, U.S.A.

James Chivian Lukban Urogynerology Associates of Colorado, Denver, Colorado, U.S.A.

Thomas L. Lyons, M.S., M.D. Director, Center for Women’s Care and Reproductive Surgery, Atlanta, Georgia, U.S.A.

Shahar Madjar Northern Michigan Urology at Bell, Bell Memorial Hospital, Marquette County, Michigan, U.S.A.

Marisa A. Mastropietro, M.D.** Lehigh Valley Hospital, Allentown, Pennsylvania, U.S.A.

Edward J. McGuire University of Michigan, Ann Arbor, Michigan, U.S.A.

John R. Miklos, M.D. Director Urogynecology, Atlanta Urogynecology Associates, Atlanta, Georgia, U.S.A.

Elizabeth A. Miller Duke University Medical Center, Durham, North Carolina, U.S.A.

Robert D. Moore, D.O. Assistant Director Urogynecology, Atlanta Urogynecology Associates, Atlanta, Georgia, U.S.A.

Tristi W. Muir, M.D. Assistant Chief, Female Pelvic Medicine and Reconstructive Surgery, Department of Obstetrics and Gynecology, Brooke Army Medical Center, Fort Sam Houston, Texas, U.S.A.

Minda Neimark Cleveland Clinic Florida, Weston, Florida, U.S.A.

Diane K. Newman University of Pennsylvania Medical Center, Philadelphia, U.S.A.

Victor W. Nitti New York University School of Medicine, New York, U.S.A.

Keith J. O’Reilly†† Tripler Army Medical Center, Honolulu, Hawaii, U.S.A.

Donald R. Ostergard, M.D. University of California, Irvine, and Long Beach Memorial Medical Center, Long Beach, California, U.S.A.

Marie Fidela R. Paraiso Cleveland Clinic Foundation, Cleveland, Ohio, U.S.A.

*Current affiliation: Medical Director, Institute for Female Pelvic Medicine and Reconstructive Surgery, Allentown, Pennsylvania, U.S.A.

**Current affiliation: Director of Gynecologic Services, Lincoln Hospital, Bronx, New York, U.S.A.

††Current affiliation: Department of Urology, Madigan Army Hospital, Tacoma, Washington, U.S.A.
Contributors

David F. Penson, M.D., M.P.H. §§ Section of Urology, 112-UR, University of Washington School of Medicine, VA Puget Sound HCS, Seattle, Washington, U.S.A.

Shlomo Raz, M.D. Professor, Department of Urology, David Geffen School of Medicine at UCLA, Los Angeles, California, U.S.A.

Raymond R. Rackley, M.D. Co-Head, Section of Female Urology, Urological Institute, Cleveland Clinic Foundation, Cleveland, Ohio, U.S.A.

Martin B. Richman, M.D. Department of Urology, Case Western Reserve University, University Hospitals of Cleveland, Cleveland, Ohio, U.S.A.

Dudley Robinson, M.D., M.R.C.O.G. Sub-speciality Trainee—Urogynaecology, Department of Obstetrics and Gynaecology, King’s College Hospital, London, England

Larissa V. Rodrı´guez, M.D. Assistant Professor, Co-director of Division of Female Urology, Reconstructive Surgery and Urodynamics, Department of Urology, University of California, Los Angeles, California, U.S.A.

Nirit Rosenblum, M.D. ** Department of Urology, University of California, Los Angeles, California, U.S.A.

Eric S. Rovner Assistant Professor Urology, Department of Surgery, Division of Urology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, U.S.A.

Christopher Saigal, M.D., M.P.H. Assistant Professor, Department of Urology, David Geffen School of Medicine at UCLA, Los Angeles, California, U.S.A.

Peter K. Sand, M.D. Professor, Department of Obstetrics and Gynecology, Evanston Continence Center, Northwestern University, Evanston, Illinois, U.S.A.

Harriette M. Scarpero New York University School of Medicine, New York, U.S.A.

Jeffrey L. Segal, M.D. Clinical Instructor OBGYN, Fellow Urogynecology, Department of OBGYN, Good Samaritan Hospital, Cincinnati, Ohio, U.S.A.

Patrick J. Shenot Thomas Jefferson University, Philadelphia, Pennsylvania, U.S.A.

John P. Stein Department of Urology, University of Southern California, Los Angeles, California, U.S.A.

Steven Swift, M.D. Associate Professor, Department of Obstetrics and Gynecology, Medical University of South Carolina, Charleston, South Carolina, U.S.A.

§§Current affiliation: Associate Professor Urology and Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, U.S.A.

**Current affiliation: Assistant Professor, Department of Urology, NYU School of Medicine, New York, New York, U.S.A.
Contributors

Marie-Blanche Tchetgen Cleveland Clinic Foundation, Cleveland, Ohio, U.S.A.

Richard Vanlangendonck, M.D. Director of Minimally Invasive Surgery, Department of Urology, Ochsner Clinic Foundation, New Orleans, Louisiana, U.S.A.

Sandip P. Vasavada, M.D. Co-Head, Section of Female Urology, Urological Institute, Cleveland Clinic Foundation, Cleveland, Ohio, U.S.A.

Stacey J. Wallach, M.D.*** University of California, Irvine, and Long Beach Memorial Medical Center, Long Beach, California, U.S.A.

Kathleen E. Walsh Female Sexual Medicine Center, David Geffen School of Medicine at UCLA, Los Angeles, California, U.S.A.

Mark D. Walters, M.D. Head, Section of Urogynecology and Reconstructive Pelvic Surgery, Department of Obstetrics and Gynecology, Cleveland Clinic Foundation, Cleveland, Ohio, U.S.A.

George D. Webster Duke University Medical Center, Durham, North Carolina, U.S.A.

O. Lenaine Westney, M.D. Assistant Professor, Department of Surgery/Urology, University of Texas Health Science Center, Houston, Texas, U.S.A.

Alan J. Wein Chair, Division of Urology, Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, U.S.A.

Kristene E. Whitmore Graduate Hospital, Philadelphia, Pennsylvania, U.S.A.

Tracey Small Wilson University of Texas Southwestern Medical Center, Dallas, Texas, U.S.A.

J. Christian Winters, M.D. Director of Female Urology, Department of Urology, Ochsner Clinic Foundation, New Orleans, Louisiana, U.S.A.

E. James Wright The Johns Hopkins Medical Institutions, Baltimore, Maryland, U.S.A.

Philippe E. Zimmern, M.D. Professor of Urology, Southwestern Medical Center, University of Texas, Dallas, Texas, U.S.A.

***Current affiliation: Assistant Professor, Department of Obstetrics and Gynecology, University of California, Sacramento, California, U.S.A.
1

Anatomy of Pelvic Support

Nirit Rosenblum,* Karyn S. Eilber,† Larissa V. Rodríguez, and Shlomo Raz
University of California, Los Angeles, California, U.S.A.

I. INTRODUCTION

Female pelvic anatomy is a complex combination of muscles, ligaments, nerves, and blood vessels that act dynamically to provide support for the urethra, bladder, uterus, and rectum. An understanding of normal mechanisms of pelvic support are essential in the evaluation of women with voiding complaints, urinary incontinence, and bowel dysfunction related to pelvic floor relaxation. Thus, the treatment of female urinary incontinence often involves recognition and treatment of concurrent pelvic pathophysiology such as cystocele, uterine prolapse, enterocele, rectocele, and perineal laxity. Identification of the various components of pelvic floor dysfunction is aided by diagnostic tools such as video urodynamics and magnetic resonance imaging of the pelvis. This chapter will focus on normal female pelvic anatomy, including the supporting structures relevant to voiding dysfunction and incontinence, as well as the pathophysiology of pelvic floor relaxation, with a description of the various components of pelvic organ prolapse.

II. PELVIC SUPPORTING STRUCTURES

A. Bone

Passive support of the pelvic floor is provided by the bony structures, which act as anchors for the important muscular and fascial structures comprising the pelvic floor. The pubic rami, ischial spines, and sacrum represent the anchoring points of the true bony pelvis, which is made up of pubis, ilium, ischium, sacrum, and coccyx (1). The pelvic floor is diamond-shaped with the pubic symphysis and sacrum at the anterior and posterior apices while the ischial spines serve as lateral anchors. The pelvic floor can be further subdivided into anterior and posterior compartments by drawing a line between the two ischial spines.

B. Ligaments

The sacrospinous ligaments span the posterior portion of the pelvic floor, from the ischial spines to the anterolateral aspect of the sacrum and coccyx. The coccygeus muscle is found between the

*Current affiliation: NYU School of Medicine, New York, New York, U.S.A.
†Current affiliation: Memorial Sloan-Kettering Cancer Center, New York, New York, U.S.A.
ischial spines and the lateral aspect of the sacrum and coccyx, overlying the sacrospinous ligament and is an important landmark in vaginal surgery. Above the coccygeus muscle lies the sciatic nerve and its plexus, while the pudendal nerve and vessels lie lateral (Alcock’s canal). Medially, the sacrospinous ligament fuses with the sacrotuberous ligament (2). Anteriorly, the tendinous arc, a curvilinear condensation of pelvic fascia arising from the obturator internus muscle, runs between the ischial spines and the lower portion of the pubic symphysis. This crucial structure provides a musculofascial origin for the majority of the anterior pelvic diaphragm, allowing its attachment to the bony pelvis. The arcus tendinous flanks the urethra and bladder neck anteriorly and rectum posteriorly, providing lateral attachment of the pelvic diaphragm and its ligaments (1).

The perineal body is a tendinous structure located in the midline of the perineum between the anus and the vaginal introitus, which provides a central point of fixation for the transverse perineal musculature (3). This anchoring site provides a second level of pelvic support to the posterior vaginal wall and rectum, incorporating the levator ani and transverse perineal musculature as well as the external anal sphincter.

C. Musculature

The striated musculature comprising the pelvic floor acts as a supporting structure for the visceral contents of the abdominopelvic cavity as well as a dynamic organ involved in maintenance of urinary and fecal continence. The pelvic diaphragm is composed of the levator ani and coccygeus muscles. The levator ani muscle group and its fascia provide the most critical support for the pelvic viscera, acting as the true muscular pelvic floor. The levator ani group is composed of the pubococcygeus, ischiococcygeus, and iliococcygeus, named according to their origin from the pelvic sidewall (4). This broad sheet of muscular tissue extends from the undersurface of the pubic symphysis to the pelvic surface of the ischial spines, taking origin from the tendinous arc laterally. The anterior muscle group, primarily made up of pubococcygeus (puborectalis) with its overlying endopelvic fascia, directly attaches to the bladder, urethra, vagina, uterus, and rectum, actively contributing to visceral control (Fig. 1). This important muscular support mechanism is crucial during times of suddenly increased intra-abdominal pressure (1).

The posterior muscle group consists of the posterior portion of the levator ani and the coccygeus muscle. Their points of origin include the more posterior portions of the tendinous arc and the ischial spines. The two sides fuse in the midline posterior to the rectum and attach to the coccyx. This plate of horizontal musculature spans from the rectal hiatus to the coccyx and allows maintenance of the normal vaginal and uterine axis. The upper vagina and uterine cervix lie on this horizontal plane created by the levator plate. This posterior muscle group is active at rest and contracts further during rectus abdominis contraction, maintaining proper vaginal axis (1).

Midline apertures in the levator ani group, collectively referred to as the levator hiatus, allow passage of the urethra, vagina, and rectum. Adjacent fascial attachments provide support to these pelvic viscera as they exit the pelvis, fashioning a “hammock” of horizontal support (5). The bladder, proximal vagina, and rectum rest on the levator floor and become coapted against it during periods of increased intra-abdominal pressure. Resting tone of the levator muscle, as well as reflex and voluntary contraction, acts to pull the vagina and rectum forward, thereby preventing incontinence of both urine and stool. These active mechanisms of pelvic floor support maintain both urinary and fecal continence.
III. ANTERIOR VAGINAL SUPPORT

The fascia overlying the pelvic floor musculature plays a critical role in pelvic support. The abdominal portion of the fascia is referred to as endopelvic fascia and represents a continuation of the abdominal transversalis fascia (1). The levator ani muscle is covered superiorly and inferiorly by a fascial layer (Fig. 2). The two fascial layers split at the levator hiatus to cover the pelvic organs that traverse it. The superior or intra-abdominal segment (endopelvic fascia) and the inferior or vaginal side of the levator fascia together constitute the pubocervical fascia in the classical anatomic descriptions. This levator fascia is divided into discrete areas of specialization, depending on the associated organ it supports. The specialization of levator fascia around the urethra, the pubourethral ligament, represents a fusion of the perirethral fascia and endopelvic fascia attaching to the tendinous arc. The levator fascia associated with the bladder, the vesicocervical ligament or fascia, represents the fusion of perivesical and endopelvic fascia attached to the tendinous arc. Such condensations of the endopelvic fascia create “ligamentous” structures that support the pelvic viscera, such as the pubourethral ligaments, urethropelvic ligaments, pubocervical fascia, and cardinal and uterosacral ligaments (Fig. 3). These represent discrete supportive structures that are part of a continuum of connective tissue surrounding the pelvic organs and serve as important surgical and physiologic landmarks. An understanding of their individual contribution to pelvic visceral support is essential in reconstructive surgery. Therefore, these four fascial structures will be discussed in detail as a basis for understanding the pathophysiology of pelvic organ prolapse.
A. Pubourethral Ligaments

The pubourethral ligaments are a condensation of levator fascia connecting the inner surface of the inferior pubis to the midportion of the urethra. They provide support and stability to the urethra and its associated anterior vaginal wall. These ligaments divide the urethra into proximal and distal halves; the proximal or intra-abdominal portion is responsible for passive or involuntary continence. The striated external urethral sphincter is located just distal to the pubourethral ligaments so that the midurethra becomes primarily responsible for active or
voluntary continence. The distal one-third of urethra is simply a conduit and does not significantly change continence when damaged or resected. Weakening or detachment of the pubourethral ligament causes separation of the urethra from the inferior ramus of the pubic symphysis. This pathologic process has an unclear role in continence.

B. Urethropelvic Ligaments

The urethropelvic ligaments are composed of a two-layer condensation of levator fascia, which provides the most important anatomic support of the bladder neck and proximal urethra to the lateral pelvic wall (Fig. 4). The first layer is known as the periurethral fascia (vaginal side) and is located immediately beneath the vaginal epithelium, apparent as a glistening white layer surrounding the urethra. The second layer of the urethropelvic ligament consists of the levator fascia covering the abdominal side of the urethra (endopelvic fascia), which fuses with the periurethral fascia. The two layers attach as a unit to the tendinous arc of the obturator fascia along the pelvic sidewall (Fig. 5). These lateral fusions of the levator and periurethral fascia provide important, elastic musculofascial support to the bladder outlet, thereby maintaining passive continence in women. Voluntary or reflex contractions of the levator or obturator musculature increase the tensile forces across these ligaments, increasing outlet resistance and continence. Thus, these ligamentous structures are critically important in the surgical correction of stress incontinence.

C. Pubocervical Fascia (Vesicopelvic Ligament)

The pubocervical fascia is a continuous sheet of connective tissue support from pubic symphysis to cervix, including the periurethral, perivesical, and endopelvic fascia, which fuse to support the bladder to the lateral pelvic wall (Fig. 6). It is formed by the fusion of fascia from the bladder wall and anterior vaginal wall in the region of the bladder base. It is continuous distally with the periurethral fascia and proximally with the uterine cervix and cardinal ligament complex. This fascial condensation, sometimes referred to as the vesicopelvic ligament, fuses laterally with the

Figure 4 Schematic diagram demonstrating the urethropelvic ligaments, a two-layer condensation of levator fascia which envelops the urethra and surrounding neurovascular structures and attaches to the lateral side wall.
endopelvic fascia, attaching to the pelvic sidewall at the tendinous arc and supporting the bladder base and anterior vaginal wall (Fig. 7). Attenuation of this lateral bladder support results in a lateral cystocele defect (paravaginal).

IV. UTERINE AND VAGINAL VAULT SUPPORT

The cardinal ligaments are thick, triangular condensations of pelvic fascia that originate from the region of the greater sciatic foramen. They insert into the lateral aspects of a fascial ring encircling the uterine cervix and isthmus as well as the adjacent vaginal wall, providing important uterine and apical vaginal support. In addition, the cardinal ligaments are an important mechanism of support for the bladder base and can be seen extending to the perivesical fascia. It is often difficult to differentiate the two structures surgically, and sharp dissection is required. These ligaments contain numerous blood vessels branching from the hypogastrics that supply the uterus and upper vagina (1). The cardinal ligaments fuse posteriorly with the uterosacral ligaments (sacrouterine), which stabilize the uterus, cervix, and upper vagina posteriorly toward the sacrum. They originate from the second, third, and fourth sacral vertebrae and insert into the posterolateral aspect of the pericervical fascia and lateral vaginal fornices (6). The fascial unit comprising cardinal ligaments, uterosacral ligaments, and pubocervical fascia spreads out posterolaterally on each side of the vaginal apex, uterus, and cervix to the pelvis (7).

The broad ligaments provide additional uterine support and are located more superiorly, covered by anterior and posterior sheets of peritoneum. They attach the lateral walls of the uterine body to the pelvic sidewall and contain the Fallopian tubes, round and ovarian ligaments, and uterine and ovarian vessels.
Figure 6 Schematic diagram of the vaginal fascial condensations from the pubic symphysis to the cervix, including the periurethral fascia, perivesical fascia, and cardinal ligaments. This continuous sheet of fascial support is also known as the pubocervical fascia.

Figure 7 Schematic diagram of the vesicopelvic ligament, the fascial condensation providing lateral support to the bladder base and anterior vaginal wall.